\(\int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx\) [352]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 87 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \]

[Out]

6/5*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*(cos(1/2*d
*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a*cos(d*x+c)^(3/2)*sin(d*x+c
)/d+2/3*a*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {4310, 2827, 2715, 2720, 2719} \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \]

[In]

Int[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x]),x]

[Out]

(6*a*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*a*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a*Sqrt[Cos[c + d*x]]*Sin[c
+ d*x])/(3*d) + (2*a*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 4310

Int[(csc[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[ActivateTrig[u]*((B + A*Sin[a + b*x])/Sin[a
+ b*x]), x] /; FreeQ[{a, b, A, B}, x] && KnownSineIntegrandQ[u, x]

Rubi steps \begin{align*} \text {integral}& = \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) \, dx \\ & = a \int \cos ^{\frac {3}{2}}(c+d x) \, dx+a \int \cos ^{\frac {5}{2}}(c+d x) \, dx \\ & = \frac {2 a \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{3} a \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{5} (3 a) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.65 (sec) , antiderivative size = 232, normalized size of antiderivative = 2.67 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {a (1+\cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {9 (3 \cos (c-d x-\arctan (\tan (c)))+\cos (c+d x+\arctan (\tan (c)))) \csc (c) \sec (c)}{\sqrt {\sec ^2(c)}}-20 \cos (c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c))) \sin (c)+2 \cos (c+d x) (-18 \cot (c)+10 \sin (c+d x)+3 \sin (2 (c+d x)))-18 \cos (c) \csc (d x+\arctan (\tan (c))) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}\right )}{60 d \sqrt {\cos (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x]),x]

[Out]

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*((9*(3*Cos[c - d*x - ArcTan[Tan[c]]] + Cos[c + d*x + ArcTan[Tan[c]]])
*Csc[c]*Sec[c])/Sqrt[Sec[c]^2] - 20*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*Hypergeometr
icPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + 2*Cos[c + d*x]*(-18*C
ot[c] + 10*Sin[c + d*x] + 3*Sin[2*(c + d*x)]) - 18*Cos[c]*Csc[d*x + ArcTan[Tan[c]]]*HypergeometricPFQ[{-1/2, -
1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(60*d*Sqrt[Cos[c
+ d*x]])

Maple [A] (verified)

Time = 6.56 (sec) , antiderivative size = 219, normalized size of antiderivative = 2.52

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-28 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(219\)

[In]

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(24*cos(1/2*d*x+1/2*c)^7-28*cos(1/2*d*x+1/2*c)
^5+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+4*cos(1/2*d
*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^
(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.57 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {2 \, {\left (3 \, a \cos \left (d x + c\right ) + 5 \, a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 9 i \, \sqrt {2} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 i \, \sqrt {2} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{15 \, d} \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/15*(2*(3*a*cos(d*x + c) + 5*a)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*I*sqrt(2)*a*weierstrassPInverse(-4, 0, co
s(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*a*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 9*I*s
qrt(2)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 9*I*sqrt(2)*a*wei
erstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(5/2)*(a+a*sec(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)*cos(d*x + c)^(5/2), x)

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)*cos(d*x + c)^(5/2), x)

Mupad [B] (verification not implemented)

Time = 13.51 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.92 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {2\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {2\,a\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d}-\frac {2\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x)),x)

[Out]

(2*a*ellipticF(c/2 + (d*x)/2, 2))/(3*d) + (2*a*cos(c + d*x)^(1/2)*sin(c + d*x))/(3*d) - (2*a*cos(c + d*x)^(7/2
)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))